Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(1): 633-643, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38079578

RESUMO

Herein, we report the visible-light-mediated addition of organoborates to α-halogenated electron-poor olefins enabled by an environmentally benign metal-free catalyst. The method accommodates a variety of boronic acid derivatives as well as alkenes and delivers the corresponding saturated α-halo-derivatives in up to 90% yields. The obtained products are high-value building blocks in organic synthesis, allowing for a variety of follow-up transformations.

2.
ACS Med Chem Lett ; 14(12): 1891-1892, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38116440

RESUMO

[This corrects the article DOI: 10.1021/acsmedchemlett.2c00166.].

3.
Nat Rev Drug Discov ; 22(7): 562-584, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277503

RESUMO

Substitution of a hydrogen atom with its heavy isotope deuterium entails the addition of one neutron to a molecule. Despite being a subtle change, this structural modification, known as deuteration, may improve the pharmacokinetic and/or toxicity profile of drugs, potentially translating into improvements in efficacy and safety compared with the non-deuterated counterparts. Initially, efforts to exploit this potential primarily led to the development of deuterated analogues of marketed drugs through a 'deuterium switch' approach, such as deutetrabenazine, which became the first deuterated drug to receive FDA approval in 2017. In the past few years, the focus has shifted to applying deuteration in novel drug discovery, and the FDA approved the pioneering de novo deuterated drug deucravacitinib in 2022. In this Review, we highlight key milestones in the field of deuteration in drug discovery and development, emphasizing recent and instructive medicinal chemistry programmes and discussing the opportunities and hurdles for drug developers, as well as the questions that remain to be addressed.


Assuntos
Química Farmacêutica , Descoberta de Drogas , Humanos , Deutério/química , Deutério/farmacocinética
4.
J Med Chem ; 66(2): 1616-1633, 2023 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-36626645

RESUMO

Here, we report for the first time a series of compounds potentially useful for the management of oxaliplatin-induced neuropathy (OINP) able to modulate the human Carbonic Anhydrases (hCAs) as well as the Transient Receptor Potential Vanilloid 1 (TRPV1). All compounds showed effective in vitro inhibition activity toward the main hCAs involved in such a pathology, whereas selected items reported moderate agonism of TRPV1. X-ray crystallographic experiments assessed the binding modes of the two enantiomers (R)-37a and (S)-37b within the hCA II cleft. Although the tails assumed diverse orientations, no appreciable effects were observed for their hCA II affinity. Similarly, the activity of (R)-39a and (S)-39b on TRPV1 was not influenced by the stereocenters. In vivo evaluation of the most promising derivatives (R)-12a, (R)-37a, and the two enantiomers (R)-39a, (S)-39b revealed antihypersensitivity effects in a mouse model of OINP with potent and persistent effect up to 75 min after administration.


Assuntos
Antineoplásicos , Anidrases Carbônicas , Animais , Camundongos , Humanos , Oxaliplatina , Anidrase Carbônica II , Inibidores da Anidrase Carbônica/farmacologia , Inibidores da Anidrase Carbônica/uso terapêutico , Inibidores da Anidrase Carbônica/química , Anidrases Carbônicas/metabolismo , Antineoplásicos/farmacologia , Relação Estrutura-Atividade , Anidrase Carbônica IX , Estrutura Molecular
5.
J Med Chem ; 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323630

RESUMO

The use of small molecules to induce targeted protein degradation is increasingly growing in the drug discovery landscape, and protein degraders have progressed rapidly through the pipelines. Despite the advances made so far, their synthesis still represents a significant burden and new approaches are highly demanded. Herein we report an unprecedented platform that leverages the modular nature of both multicomponent reactions and degraders to enable the preparation of highly decorated PROTACs. As a proof of principle, our platform has been applied to the preparation of potential BRD4-degrading PROTACs, resulting in the discovery of a set of degraders endowed with high degradation efficiency. Compared to the existing methods, our approach offers a versatile and cost-effective means to access libraries of protein degraders and increase the chance of identifying successful candidates.

6.
ACS Med Chem Lett ; 13(8): 1278-1285, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35978700

RESUMO

Precision deuteration has become part of the medicinal chemist's toolbox, but its usefulness can be undermined by unpredictable metabolic switch effects. Herein we report the deuteration of doxophylline, a drug used in the treatment of asthma and COPD that undergoes extensive oxidative metabolism. Labeling of the main metabolic soft spots triggered an unexpected multidirectional metabolic switch that, while not improving the pharmacokinetic parameters, changed the metabolic scenario and, in turn, the pharmacodynamic features in two murine models of lung injury.

7.
Blood Adv ; 6(15): 4471-4484, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35696753

RESUMO

Store-operated Ca2+-entry is a cellular mechanism that governs the replenishment of intracellular stores of Ca2+ upon depletion caused by the opening of intracellular Ca2+-channels. Gain-of-function mutations of the 2 key proteins of store-operated Ca2+-entry, STIM1 and ORAI1, are associated with several ultra-rare diseases clustered as tubular aggregate myopathies. Our group has previously demonstrated that a mouse model bearing the STIM1 p.I115F mutation recapitulates the main features of the STIM1 gain-of-function disorders: muscle weakness and thrombocytopenia. Similar findings have been found in other mice bearing different mutations on STIM1. At present, no valid treatment is available for these patients. In the present contribution, we report that CIC-39Na, a store-operated Ca2+-entry inhibitor, restores platelet number and counteracts the abnormal bleeding that characterizes these mice. Subtle differences in thrombopoiesis were observed in STIM1 p.I115F mice, but the main difference between wild-type and STIM1 p.I115F mice was in platelet clearance and in the levels of platelet cytosolic basal Ca2+. Both were restored on treatment of animals with CIC-39Na. This finding paves the way to a pharmacological treatment strategy for thrombocytopenia in tubular aggregate myopathy patients.


Assuntos
Miopatias Congênitas Estruturais , Trombocitopenia , Animais , Cálcio/metabolismo , Camundongos , Mutação , Miopatias Congênitas Estruturais/genética , Miopatias Congênitas Estruturais/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Trombocitopenia/genética
8.
Cell Calcium ; 105: 102605, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35636153

RESUMO

Gain-of-function mutations on STIM1 and ORAI1 genes are responsible for an increased store-operated calcium entry, and underlie the characteristic symptoms of three overlapping ultra-rare genetic disorders (i.e tubular aggregate myopathy, Stormorken syndrome, York platelet syndrome) that can be grouped as tubular aggregate myopathies. These mutations lead to a wide spectrum of defects, which usually include muscle weakness and cramps. Negative modulators of store-operated Ca2+-entry targeting wild-type STIM1 and ORAI1 have entered clinical trials for a different array of disorders, including pancreatitis, COVID-19, cancer, and autoimmune disorders and, while efficacy data is awaited, safety data indicates tolerability of this STIM1/ORAI1 mutations are amenable to pharmacological intervention. If this were so, given that there are no approved treatments or clinical trials ongoing for these rare disorders, it could be envisaged that these agents could also rehabilitate tubular aggregate myopathy patients. In the present contribution we characterized the Ca2+-entry patterns induced by eleven STIM1 and three ORAI1 mutations in heterologous systems or in patient-derived cells, i.e. fibroblasts and myotubes, and evaluated the effect of CIC-37 and CIC-39, two novel store-operated calcium entry modulators. Our data show that all STIM1 and ORAI1 gain-of-function mutations tested, with the possible exception of the R304Q STIM1 mutation, are amenable to inhibition, albeit with slightly different sensitivities, paving the way to the development of SOCE modulators in tubular aggregate myopathies.


Assuntos
COVID-19 , Miopatias Congênitas Estruturais , Transtornos Plaquetários , Cálcio/metabolismo , Dislexia , Eritrócitos Anormais , Humanos , Ictiose , Transtornos de Enxaqueca , Miose , Fadiga Muscular , Mutação/genética , Miopatias Congênitas Estruturais/genética , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Baço/anormalidades , Molécula 1 de Interação Estromal/genética
9.
ChemMedChem ; 16(22): 3439-3450, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34355531

RESUMO

Inhibitors of indoleamine 2,3-dioxygenase 1 (IDO1) are considered a promising strategy in cancer immunotherapy as they are able to boost the immune response and to work in synergy with other immunotherapeutic agents. Despite the fact that no IDO1 inhibitor has been approved so far, recent studies have shed light on the additional roles that IDO1 mediates beyond its catalytic activity, conferring new life to the field. Here we present a novel class of compounds originated from a structure-based virtual screening made on IDO1 active site. The starting hit compound is a novel chemotype based on a [1,2,4]triazolo[4,3-a]pyridine scaffold, so far underexploited among the heme binding moieties. Thanks to the rational and in silico-guided design of analogues, an improvement of the potency to sub-micromolar levels has been achieved, with excellent in vitro metabolic stability and exquisite selectivity with respect to other heme-containing enzymes.


Assuntos
Antineoplásicos , Inibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenase , Humanos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Estrutura Molecular , Relação Estrutura-Atividade
10.
ACS Med Chem Lett ; 12(4): 640-646, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33854704

RESUMO

Store-operated calcium entry (SOCE) is a pivotal mechanism in calcium homeostasis, and, despite still being under investigation, its dysregulation is known to be associated with severe human disorders. SOCE modulators are therefore needed both as chemical probes and as therapeutic agents. While many small molecules have been described so far, their poor properties in terms of drug-likeness have limited their translation into the clinical practice. In this work, we describe the bioisosteric replacement of the ester moiety in pyrazole derivatives with a 1,2,4-oxadiazole ring as a means to afford a class of modulators with high metabolic stability. Moreover, among our derivatives, a compound able to increase the calcium entry was identified, further enriching the library of available SOCE activators.

11.
Org Lett ; 23(9): 3610-3614, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33913716

RESUMO

Starting from a wide range of α-acylamino amide substructures synthesized using tritylamine as an ammonia surrogate in the Ugi reaction, Burgess-type reagents enable cyclodehydration and afford unprecedented oxazole scaffolds with four points of diversity, including a sulfamide moiety in the 5-position. The synthetic procedure employs readily available starting materials and proceeds smoothly under mild reaction conditions with good tolerance for a variety of functional groups, coming to fill a gap in the field of oxazole compounds.

12.
J Med Chem ; 64(8): 4410-4429, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33847110

RESUMO

The World Health Organization assigns international nonproprietary names (INN), also known as common names, to compounds upon request from drug developers. Structures of INNs are publicly available and represent a source, albeit underused, to understand trends in drug research and development. Here, we explain how a common drug name is composed and analyze chemical entities from 2000 to 2021. In the analysis, we describe some changes that intertwine chemical structure, newer therapeutic targets (e.g., kinases), including a significant increase in the use of fluorine and of heterocycles, and some other evolutionary modifications, such as the progressive increase in molecular weight. Alongside these, small signs of change can be spotted, such as the rise in spirocyclic scaffolds and small rings and the emergence of unconventional structural moieties that might forecast the future to come.


Assuntos
Química Farmacêutica/tendências , Preparações Farmacêuticas/química , Terminologia como Assunto , Flúor/química , Compostos Heterocíclicos/química , Preparações Farmacêuticas/metabolismo
13.
Sci Rep ; 11(1): 246, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420359

RESUMO

TRPV1, a member of the transient receptor potential (TRP) family, is a nonselective calcium permeable ion channel gated by physical and chemical stimuli. In the skin, TRPV1 plays an important role in neurogenic inflammation, pain and pruritus associated to many dermatological diseases. Consequently, TRPV1 modulators could represent pharmacological tools to respond to important patient needs that still represent an unmet medical demand. Previously, we reported the design of capsaicinoid-based molecules that undergo dermal deactivation (soft drugs), thus preventing their long-term dermal accumulation. Here, we investigated the pharmacological properties of the lead antagonist, 2-((4-hydroxy-2-iodo-5-methoxybenzyl) amino)-2-oxoethyl dodecanoate (AG1529), on heterologously expressed human TRPV1 (hTRPV1), on nociceptor excitability and on an in vivo model of acute pruritus. We report that AG1529 competitively blocked capsaicin-evoked activation of hTRPV1 with micromolar potency, moderately affected pH-induced gating, and did not alter voltage- and heat-mediated responses. AG1529 displays modest receptor selectivity as it mildly blocked recombinant hTRPA1 and hTRPM8 channels. In primary cultures of rat dorsal root ganglion (DRG) neurons, AG1529 potently reduced capsaicin-evoked neuronal firing. AG1529 exhibited lower potency on pH-evoked TRPV1 firing, and TRPA1-elicited nociceptor excitability. Furthermore, AG1529 abolished histaminergic and inflammation mediated TRPV1 sensitization in primary cultures of DRG neurons. Noteworthy, dermal wiping of AG1529, either in an acetone-based formulation or in an anhydrous ointment, dose-dependently attenuated acute histaminergic itch in a rodent model. This cutaneous anti-pruritic effect was devoid of the normal nocifensive action evoked by the burning sensation of capsaicin. Taken together, these preclinical results unveil the mode of action of AG1529 on TRPV1 channels and substantiate the tenet that this capsaicinoid-based soft drug is a promising candidate for drug development as a topical anti-pruritic and anti-inflammatory medication.


Assuntos
Capsaicina/análogos & derivados , Histamina/metabolismo , Lauratos/química , Lauratos/farmacologia , Células Receptoras Sensoriais/citologia , Células Receptoras Sensoriais/efeitos dos fármacos , Canais de Cátion TRPV/metabolismo , Descoberta de Drogas , Gânglios Espinais/efeitos dos fármacos , Humanos , Inflamação/patologia , Células Receptoras Sensoriais/metabolismo
14.
Molecules ; 26(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494521

RESUMO

Despite its uniqueness, the Bargellini multicomponent reaction remains barely known by the most part of chemists. This can be ascribed to the fact that this transformation has not been adequately reviewed in the classic books of named reactions in organic chemistry. Nevertheless, several works on this reaction have been carried out over the years, many of them were written in Italian in the period 1929-1966. In this review article we extensively cover, in a chronological order, the most important applications of the Bargellini reaction reported to date, with the hope that this knowledge-sharing will help chemists to properly use this multicomponent transformation and imagine novel reactivities based on it.


Assuntos
Química Orgânica/história , Descoberta de Drogas/história , História do Século XX , Itália
15.
J Med Chem ; 63(23): 14761-14779, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33253576

RESUMO

Store-operated calcium entry (SOCE) is important in the maintenance of calcium homeostasis and alterations in this mechanism are responsible for several pathological conditions, including acute pancreatitis. Since the discovery of SOCE, many inhibitors have been identified and extensively used as chemical probes to better elucidate the role played by this cellular mechanism. Nevertheless, only a few have demonstrated drug-like properties so far. Here, we report a class of biphenyl triazoles among which stands out a lead compound, 34, that is endowed with an inhibitory activity at nanomolar concentrations, suitable pharmacokinetic properties, and in vivo efficacy in a mouse model of acute pancreatitis.


Assuntos
Compostos de Bifenilo/uso terapêutico , Bloqueadores dos Canais de Cálcio/uso terapêutico , Cálcio/metabolismo , Pancreatite/tratamento farmacológico , Triazóis/uso terapêutico , Animais , Compostos de Bifenilo/síntese química , Compostos de Bifenilo/metabolismo , Bloqueadores dos Canais de Cálcio/síntese química , Bloqueadores dos Canais de Cálcio/metabolismo , Linhagem Celular , Di-Hidro-Orotato Desidrogenase , Descoberta de Drogas , Estabilidade de Medicamentos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Humanos , Masculino , Camundongos Endogâmicos C57BL , Estrutura Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Pancreatite/metabolismo , Pancreatite/patologia , Solubilidade , Relação Estrutura-Atividade , Triazóis/síntese química , Triazóis/metabolismo
16.
J Med Chem ; 63(18): 10170-10187, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32352778

RESUMO

Since 1977, the World Health Organization publishes a list of essential medicines, i.e., those that satisfy the priority health care needs of the population and are selected with regard to disease prevalence and public health relevance, evidence of clinical efficacy, and safety, as well as comparative costs and cost-effectiveness. The Essential Medicines List (EML) is an invaluable tool for all countries to select those medicines that have an excellent risk/benefit ratio and that are reputed to be of pivotal importance to health. In the present perspective, we describe the chemical composition and the main features of the small molecules that are included in the EML, spanning from their origin, to their stereochemistry and measure of drug-likeness. Most and foremost, we wish to disseminate the importance of the EML, which can be both a helpful teaching tool in an ever-expanding world of medicines and an inspiration for those involved in pharmaceutical R&D.


Assuntos
Química Farmacêutica , Medicamentos Essenciais/química , Administração Oral , Medicamentos Essenciais/administração & dosagem , Formulários Farmacêuticos como Assunto , Humanos , Injeções , Estrutura Molecular , Estereoisomerismo , Organização Mundial da Saúde
17.
J Med Chem ; 63(6): 3047-3065, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-32150677

RESUMO

In this study, a successful medicinal chemistry campaign that exploited virtual, biophysical, and biological investigations led to the identification of a novel class of IDO1 inhibitors based on a benzimidazole substructure. This family of compounds is endowed with an extensive bonding network in the protein active site, including the interaction with pocket C, a region not commonly exploited by previously reported IDO1 inhibitors. The tight packing of selected compounds within the enzyme contributes to the strong binding interaction with IDO1, to the inhibitory potency at the low nanomolar level in several tumoral settings, and to the selectivity toward IDO1 over TDO and CYPs. Notably, a significant reduction of L-Kyn levels in plasma, together with a potent effect on abrogating immunosuppressive properties of MDSC-like cells isolated from patients affected by pancreatic ductal adenocarcinoma, was observed, pointing to this class of molecules as a valuable template for boosting the antitumor immune system.


Assuntos
Benzimidazóis/química , Benzimidazóis/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Animais , Benzimidazóis/sangue , Linhagem Celular Tumoral , Células Cultivadas , Inibidores Enzimáticos/sangue , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/química , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Masculino , Camundongos , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
18.
Front Immunol ; 11: 613069, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584695

RESUMO

Plasticity and adaptation to environmental stress are the main features that tumor and immune system share. Except for intrinsic and high-defined properties, cancer and immune cells need to overcome the opponent's defenses by activating more effective signaling networks, based on common elements such as transcriptional factors, protein-based complexes and receptors. Interestingly, growing evidence point to an increasing number of proteins capable of performing diverse and unpredictable functions. These multifunctional proteins are defined as moonlighting proteins. During cancer progression, several moonlighting proteins are involved in promoting an immunosuppressive microenvironment by reprogramming immune cells to support tumor growth and metastatic spread. Conversely, other moonlighting proteins support tumor antigen presentation and lymphocytes activation, leading to several anti-cancer immunological responses. In this light, moonlighting proteins could be used as promising new potential targets for improving current cancer therapies. In this review, we describe in details 12 unprecedented moonlighting proteins that during cancer progression play a decisive role in guiding cancer-associated immunomodulation by shaping innate or adaptive immune response.


Assuntos
Neoplasias/imunologia , Proteínas/imunologia , Animais , Proliferação de Células/fisiologia , Humanos , Imunidade/imunologia , Imunomodulação/imunologia , Ativação Linfocitária/imunologia
19.
Dis Model Mech ; 13(2)2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31666234

RESUMO

STIM and ORAI proteins play a fundamental role in calcium signaling, allowing for calcium influx through the plasma membrane upon depletion of intracellular stores, in a process known as store-operated Ca2+ entry. Point mutations that lead to gain-of-function activity of either STIM1 or ORAI1 are responsible for a cluster of ultra-rare syndromes characterized by motor disturbances and platelet dysfunction. The prevalence of these disorders is at present unknown. In this study, we describe the generation and characterization of a knock-in mouse model (KI-STIM1I115F) that bears a clinically relevant mutation located in one of the two calcium-sensing EF-hand motifs of STIM1. The mouse colony is viable and fertile. Myotubes from these mice show an increased store-operated Ca2+ entry, as predicted. This most likely causes the dystrophic muscle phenotype observed, which worsens with age. Such histological features are not accompanied by a significant increase in creatine kinase. However, animals have significantly worse performance in rotarod and treadmill tests, showing increased susceptibility to fatigue, in analogy to the human disease. The mice also show increased bleeding time and thrombocytopenia, as well as an unexpected defect in the myeloid lineage and in natural killer cells. The present model, together with recently described models bearing the R304W mutation (located on the coiled-coil domain in the cytosolic side of STIM1), represents an ideal platform to characterize the disorder and test therapeutic strategies for patients with STIM1 mutations, currently without therapeutic solutions.This article has an associated First Person interview with Celia Cordero-Sanchez, co-first author of the paper.


Assuntos
Motivos EF Hand/genética , Mutação/genética , Miopatias Congênitas Estruturais/genética , Molécula 1 de Interação Estromal/química , Molécula 1 de Interação Estromal/genética , Animais , Cálcio/metabolismo , Feminino , Masculino , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/ultraestrutura , Miopatias Congênitas Estruturais/patologia , Fenótipo
20.
Drug Discov Today ; 24(12): 2234-2246, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31494188

RESUMO

A soft drug (SD) displays a metabolically labile spot and, after having exerted its activity in the site of action, undergoes a fast metabolism, leading to inactive metabolites. The SD approach has recently found widespread application in the dermatological field because it provides a means of localising the therapeutic effect in skin, while minimising systemic exposure. The literature is rapidly growing of successful examples of compounds targeting sphingosine-1-phosphate receptor 1 (S1PR1), transient receptor potential vanilloid 1 (TRPV1), Janus kinase (JAK), caspase 1, and histone deacetylase (HDAC), for the treatment of skin inflammatory, autoimmune, and oncological diseases. As a demonstration of the potential of this strategy, the SD approach recently led to the approval of crisaborole, a soft phosphodiesterase 4 (PDE4) inhibitor, for atopic dermatitis, while other agents are in clinical development.


Assuntos
Fármacos Dermatológicos/administração & dosagem , Desenvolvimento de Medicamentos , Dermatopatias/tratamento farmacológico , Animais , Compostos de Boro/administração & dosagem , Compostos de Boro/metabolismo , Compostos de Boro/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Dermatite Atópica/tratamento farmacológico , Fármacos Dermatológicos/metabolismo , Fármacos Dermatológicos/farmacologia , Humanos , Inibidores da Fosfodiesterase 4/administração & dosagem , Inibidores da Fosfodiesterase 4/metabolismo , Inibidores da Fosfodiesterase 4/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...